The Solid State K-capture Generator is a computer controlled system that utilizes the “K-Capture” principle to create electrical energy.
已知K-Capture戒除了巨大的能量,但没有人发现了一种控制能量的方法。K-Capture Generator对此作出,并且可能被证明是发现最伟大的能量之一。
非屏蔽,它确实发出X射线粒子。
预计原型模型(用于制造)将产生至少50kW的恒定电流,预计在加热到自动关闭电源的温度之前将浪涌和较重的负载处理1至2小时。。如果发生这种情况,则该单位不会受到伤害,但是当单位的温度降至约60°F时,必须重新开始。
大多数美国家庭平均每天5到7千瓦。然而,100%电动房屋可能具有高达35kW的峰值使用。凭借正常的电源使用,50kW可以从三到十个房屋处理,具体取决于尺寸和峰值需求。如果需要更多的电源,很少有小型商业运营需要超过50kW以提供他们的需求,如果需要更多的电源,则可以添加更多单元或单位。每个人都将作为备用单元运行,并在不丢失功率的情况下供应所需的电量,因为每个都开始运行。
一个单元测量大约2'x 2'x 6',但在将组件零件装配在一起时,也可以通过使用不同的配置来进行更小。
在标准的基础上,该装置通常提供5kW的AC电源和45kW的直流电源。这可以通过使用外部逆变器,变压器等来改变。
据估计,在正常情况下,所用燃料将持续超过100万年。然而,由于它确实使用其他非移动部件,因此预计将在计算机控制,二极管,电容器等中具有故障。当这种情况发生时,需要更换,并且必须重新启动该单元。
启动单位需要120伏,400瓦可用的电源是在“必要处”的基础上,如果所有电源关闭,则对该单元没有危害。
本文所述的理论通过K捕获产生无线电核素来用作电源。
通过产生高强度紫外线突发来引起达到该目标的方法,以引起锂同位素6中的K电子的不规则条件,产生k捕获的条件。
用氮激光产生紫外线突发。已知在一段时间内,氮气中的高压放电和高电流放电将产生3,371埃的相干辐射脉冲。激光动作遇到在放电中移动的电子,吸收其能量。遭遇在不稳定状态下留下分子。它通常通过在3,371埃处发射光子来降低能量的状态。
光子可能遇到其他激发的分子,导致它们在锁定步骤中发射它们的能量与遇到的光子。所得到的辐射脉冲具有每种光子的能量。这是激光动作。
只要沿着路径存在激动的分子,该过程仍在继续。这种过程很快停止,因为当大量分子兴奋时,它们随机开始随机级联,以便较低的能量状态。
The numbers of molecules at lower 1evels build up rapidly, eventually exceeding those at upper levels and terminating the amplification.
即使有兴奋的分子留下,激光也会迅速变为自身。关闭时间快,通常小于十纳秒。
在氮气中诱导激光作用取决于构建机构,该机构在大约100托的压力下横向通过气体柱横向地瞬间向高电压发送巨大的电子电流。
可以处理纳秒内成千上万安培的适当的切换机构,原则上和施工都非常简单。
No laser mirrors are needed, the optical gain of the rapid discharge is so large that the emission becomes super-radiant, that laser action takes place without an optical cavity.
紫外线激光器可以缩放到更高的功率。一米长的排放路径将开发出近1000万瓦的输出PU1SE。输出从激发气体柱的两端发射,但一端的镜子在另一端的电源下降。
k捕获技术信息
在某些情况下,中子的比率protons is low, a type of decay has been found to exist. Where a proton is converted to a neutron in the nucleus by the capture of one of the extra nuclear electrons, with a neutrino being formed at the same time. The product of this type of radioactivity would have the same number as its parent, but its atomic number would be one unit lower.
The phenomenon described is referred to as a decay by electron capture. The electron is captured usually from the K level, or first quantum level, for such an electron is likely to be found near the nucleus; consequently, the expression K-electron capture, or K-capture is often employed. Instances of an electron being captured from the second quantum level, or L level, is not unknown although they are not common. The possibility of electron capture was predicted by the Japanese mathematical physicists H. Yukawa and S. Sakata in 1936. Proof of its reality was obtained in the United States by L. W. Alvarez in 1938.
k捕获的检测取决于k-电子离开k量子水平的孔的事实。来自较高量级电平的电子将进入填充位置,通过过量的能量作为特征X射线发射。由于K捕获前面先于电子的转变和X射线的发射,因此X射线将是产品核的特性,其具有较少的原子序数。其中的情况是钒同位素-49。发现衰减伴随着钛的K系列的特征X射线。显然,钒-49衰减k捕获。
When a Lithium-6 atom encounters an ultraviolet photon adding enough energy to cause a K-capture, its atomic number is changed and becomes a Helium-6 atom. Helium-6 is a radio nuclide having a beta emission of 3.58 MeV. No other radiation is present except for a characteristic X-ray of Helium.
β颗粒在磁场中捕获并在使用能量工作之前存储在电容器库中。
The number of reactions needed to produce a sizeable current flow is small.
In the terms of energy needs, the usefulness of this process is clear.
Disclaimer:
I did not write this article… I only edited it for clarity. Nor have I seen this device working. However, I did speak with a person at the 1998 Exotic Research Conference from Utah who had claimed to have built this type of device with a few of his associates. This guy stated that they did not know how to convert the x-rays to electricity. He said that the device was very dangerous and hard to control. It was also stated to have wiped out computer hard-drives within a few blocks of the operating device. This posted article seems to answer the conversion problem.
此时我没有其他有关此设备的信息。如果我有时间我会设置这个设备并使用铌酸锂水晶作为目标。我还将使用电极在加热时产生热电效应。如果您中的任何一个有氮激光器,则该设备应容易验证。请与我们其他人分享您的结果。